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TRANSFORMING CURVES INTO CURVES WITH THE SAME SHAPE

Abstract

Curves are considered to have the same shape when they are

related by a similarity transformation of a certain kind. This

paper extends earlier work on parallel curves to curves with the

same shape. Some examples are given more or less explicitly. A

generalization is used to show that the theory is ordinal and to

show how the theory may be applied to measure sensation. The

problem of actually transforming curves into curves with the same

shape is reduced to the problem of rendering another set of curves

parallel. Connections with groups and rings are developed to place

the work in a familiar context. These connections and the earlier

work on parallel curves are used to obtain necessary and sufficient

conditions for the existence of transformations, to study the

uniqueness of transformations and to show how transformations can

be calculated.
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Michael. V. Levine
University of Pennsylvania

INTRODUCTION

Two curves are commonly called parallel when it is possible

to shift one along the x-axis until it coincides with the other.

In other words a pair of curves (or subsets of the plane) are

parallel when there is a constant k such that the translation

<:x, y >--.><Zx + k, y > carries one onto the other. For an example,

let one curve be the graph of the distribution of a normal random

variable and the other be that of a normal random variable with the

same variance as the first but a different mean.

Curves will be called similar when a increasing similarity trans-

formation along the x-axis carries one onto the other. In other words

they have the same shape in the sense that for some constants a > 0

and k the mapping <:x, y >--4 <WC k, y > carries one onto the

other. For an example, consider the distributions of two normal random

variables with different means and variances. More examples are in-

dicated below.

A real valued function u renders a set of curves parallel when

the transformation <: x, y >--> < 11(X) j. y > simultaneously carries

all the curves into new curves such that each pair of new curves is

parallel. The phase "u renders a set of curves similar" is analo-

gously defined.

There is (Levine, 1970) a general theory for curves that can be

.rendered parallel. This paper extends that theory to curves that can

be rendered similar.
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For definiteness the reader may wish to consider transforming

curves obtained as the graphs of special (increasing, one-to-one,

onto) real functions. However, there are two important reasons for

temporarily setting aside this interpretation in favor of a more

abstract interpretation of the paper's subject.

In the first place in most of the applications presently fore-

seen the psychologist will not be considering mappings from the space

of real numbers onto the space of real numbers. Instead he will be

considering mappings between spaces assumed to be topologically

equivalent to the real number. For examples, there are mappings

between the objective and subjective probabilities of uncertain

events,between valued objects and utilities and between dial settings

on a rheostat controlling the physical intensity of a stimulus and a

continuum of sensations. Secondly it is extremely important to recog-

nize that even when spaces of numbers are considered in this theory,

the algebraic,arithmetic,and metric properties of the numbers are

irrelevant. Only the ordinal (i.e., topological) attributes of the

numbers have consequences within this theory.

For these reasons we briefly consider the following problem about

two abstract topological spaces A and B and a family of homeo-

morphisms (i.e., continuous functions with continuous inverses).

Problem One: Let F be a given set of homeomorphisms mapping a topo-

logicallogical space A onto a space B. Find all the pairs of homeomorphisms

(u,v) such that
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1. u maps A onto the reals and v maps

the reals onto B and

2. for each F in F there are real
INJ

constants a,b such that

i. a is positive

ii. F(x) = v(au(x) b) for all x in A.

For example, suppose F is a set of strictly monotonic functions

mapping the reals onto the reals. Then a transformation u renders

the graphs of the function in F similar if and only if for some

v, (u,v) is a solution to Problem One.

In the earlier paper five examples were given to demonstrate

that this sort of problem occurs so frequently in psychology that it

is desirable to have a general theory to deal with it. That paper

dealt with the special case obtained by setting A = B = real numbers,

vu(x) = x for all x and a = 1 in condition 2. However, the general

situation is obvious in many of the examples.

As an additional example suppose one is studying a family of

distribution functions such as, for concreteness, (F
X
3 where F (x)

is the proportion of children having weight less than x pounds that

one expects to observe in the population of children of age X. As an

alternative to regarding the normal family of distributions as a con-

venient set of distributions containing good approximations to the

distributions F one may use this theory to study all the (bicontinuous)

transformations u of weight such that the distributions of the trans-

formed measures are exactly normal.
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To do this one considers Problem One with A = positive numbers,

B = numbers between zero and one and F = {Fx}. Then this theory will

deliver all the functions u such that distributions of the transformed

weights, u(weight), will be normal. It will tell when such trans-

formations can be defined. It will show that the transformed weights

are generally unique up to a linear transformation. And even when the

distributions cannot be made normal it will sometimes deliver trans-

formations u such that distributions of the transformed random vari-

ables have the same (not normal) shape. In this event the transformation

u will generally be essentially unique. Furthermore, from the numbers

a,b in part 2 one can obtain measures of dispersion and central tendency

which are precisely analoguous to the standard deviation and mean of the

normal family.

SUMMARY AND RELATION TO MATHEMATICAL LITERATURE

For definitions of technical terms used in the summary part of

this section, please see section III.

Section I contains a reformulation of Problem One and the problem

of finding the transformations rendering curves similar as a more standard

mathematical problem. Section II contains some definitions and some

published mathematical facts needed for solving the reformulated problem.

Section III and V contain solutions to the problem. Section IV contains

an informal discussion of concepts used in section III.



To be more detailed, the set of functions F in Problem One

is replaced by a Troup of real homeomorphisms G. In section I it

is shown that this results in no loss of generality. Composition of

functions is the group operation. Problem One is then rephrased as

an equivalent question about the group G. The question is: find all

the increasing homeomorphisms u such that uGu
-1

is a subgroup of

the group of affine homeomorphisms (x--4 ax + b: a is positive and b

is real}.

This question has three different answers according to the nature

of the group G.

1. If G is not abelian, then functions u with the desired

properties exist if and only if the derived group G' of G is con-

jugate to a group of translations. In this case uGu
-1

is affine if

and only if uG'u is a group of translations.

2. If G is abelian but not conjugate to a group of translations,

then either there are no solutions u or a pair of groups G
+
, G can

be constructed such that all u's can be obtained from pairs v,w,

- -
where both vG

+
v
-1

and wG w
1

are groups of translations.

3. If G is abelian and conjugate to a group of translations,

then all functions u with the desired properties can be obtained by

applying the results in an earlier paper (Levine, 1970). That paper

also characterizes these groups.

From the mathematician's point of view, the major result is a

characterization of the conjugates of the subgroups of the group

ax + b: a is positive) within the group of increasing real
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homeomorphisms with product given by composition of functions. This

result has obvious implications for the transformation equation (Acze#1,

1966) F[F(x,a),b] = F(x,aob) where x ranges over the reals and a,b

range over a subsemigroup of the affine transformations of the real

line. For a discussion of the connections between the work generalized

in this paper and work on functional equations, continuous iteration,

iteration groups and webs see Levine, 1970, section I.4.

I. SIMPLIFYING PROBLEM ONE

In this section Problem One is reformulated until a simpler,

more standard problem is obtained. In the process an attempt is made

to demonstrate that this is an ordinal theory and to show how this

theory may prove useful in measuring mental events.

As a first step both of the topologial spaces A and B are

replaced by the space of real numberS. This will be done by considering

homeomorphisms a: Reals---) A and 0: B--> Reals. With such a pair

of functions, the set of functions F may be used to define a set of

real functions 0Fa = (0Fa : F e F3.

There are two types of applications in which one might consider

spaces other than the reals. In the first type A and B are objective

spaces with numbers already assigned to points by physical measurement.

In this case the points in A and B will be identified by numbers

ranging over intervals and a choice of a,0 will be easy. Thus in the

example on distributions of weights, each weight (that is, class of
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equally heavy individuals) in A is measured by a positive number x

giving weight in pounds and each probability in B by a number y

between zero and one. In this case we may choose a(x) = ex and

0(y) = log y - log(1-y). The particular choice of a and 0 will

be inconsequential in a sense soon to be made precise.

For any choice of (a,0) and any F in F we have v[au(x)+b] =

F(x) for all x in A if and only if Ov[aua(x)+b] = 0Fa(x) for

all real x. Consequently a pair of homeomorphisms (u,v) satisfy

the conditions of Problem One posed in terms of F, A and B if and

only if (ua,0v) satisfy the conditions of Problem One with OFa,

Reals, Reals replacing F, A, B. Thus if in Problem One A and B

are objective spaces we may choose any homeomorphisms a,0 and solve

Problem One with 0Fa, Reals, Reals replacing F, A, B for solution

pairs (u',v'). The solutions to the original problem will be exactly

the pairs (u'a
1

6,0
-1

v1).

Notice that the same functions u and v are obtained as

solutions to Problem One for each choice of a and S. It is in

this sense that the choice of a are 0 is inconsequential. Thus:,

for example,if A is a set of weights we obtain the same functions u

assigning numbers to individuals whether we initially measure weights

in pounds or the logarithm of pounds. In this sense the algebraic,

arithmetic and metric properties of the numbers initially assigned to

objects are irrelevant.
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In the second type of application, the space B is a subjective

space. Thus in studying audition we might assume that there is some

basic psychophysical function p connecting the physical intensity

of a continuum of sounds A with a continuum of loudnesses B. Further

it might be assumed that there are manipulations A which change the

relationship between physical intensity and loudness so that in con-

dition A the correspondence FA between physical intensity and

subjective intensity is aAp(x) + bA where aA and bA are

constants depending only-on A. Statements about recruitment and

thresholds could then be rephrased in terms of hypotheses about aA

and bA. However if one is primarily interested in the function p,

then one may consider Problem One relative to the hypothetical function

{FA}, the physical A and the subjective continuum B.

In this type of application experimental finesse and a deep

understanding of phenomena are required to recast Problem One as a

question about real homeomorphisms. One general method is to use

cross context or cross modality matching to first recast Problem One

as a question about experimentally defined correspondences between two

objective spaces. The rationale and procedure is roughly this: Under

some standard conditions of observation there is a homeomorphism H

mapping an objective continuum A
0

onto the subjective continuum B.

!Under each experimental condition A there is a correspondence
X

between the objective continuum A and the sUbjedtiVe continuum B.

n order to obtain an elpirical-mappIrig betWeen7tWo objective spaces,

an observer selects pairs x in A and y in A0 such that Fx(x)
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matches H(y). Under appropriate conditions this empirically de-

fines homeomorphism H
-1
F
X

sending :4 in the objective space A

to y in the objective space A0. By varying X we obtain a

r 1 ,
family tH F

X
of homeomorphisms mapping A onto

Thus at the cost of introducing a new unknown H we convert the

second type of application into the first. By solving Problem One with

r -1
tH F

X
I, A, A

0
we can still Obtain a great deal of quantitative in-

formation about the psychophysical function p. For (p,H
1

) will be

a solution for Problem One. Now suppose (u,v) and (u',v') are

also solutions to Problem One. Then under very general conditions u

and u' will be related by a linear transformation. Consequently

if (u,v) is any solution to Problem One, we have p() = au(.) + b

for some constants a and b.

From this discussion it should be clear that there is no

generality lost by considering only real homeomorphisms. It should

be also clear that the theory might prove useful in measuring sub-

jective spaces and that prior physical measurements of the objective

spaces appearing in applications have no consequences.

In order to use standard group theoretical methods and results,

each set of real homeomorphisms will be associated with a definite

group of homeomorphisms. The group operation here will be composition

of functions. The associated group of F is defined as the subgroup

r
of the group of all real homsomorphisms generated by the set {F

-I
G: F

These groups were introduced and discussed in

I1.
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detail in section rv.i. of the earlier paper. In that paper it

was shown that these groups could be used to reduce a problem de-

fined by many curves to an equivalent problem defined by just two

or three curves.

To further motivate the use of associated groups it is shown

that with these groups it becomes possible to search for the functions

u and v of Problem One successively rather than simultaneously.

This claim is made precise in two propositions below.

Proposition 1: Let the set of real homeomorphisms F have

associated group A. Then for any u there exists a v such that

(u,v) satisfies Problem One for F, Reals, Reals if and only if for

each g in G there is some positive a and real b such that

g() = u
-1

(au(..) + b).

Proof: Suppose (u,v) satisfies One for homeomorphisms F. Then

for each F and G in F we have positive a,c and real b,d
rsr

such that

F() = v[au() + b] ; F-1 =111[2.v1() - b/a]
a

G() = v[cu() + d] ; F 1G= u-1[5-u() + (d-b)/a].

Consequently the generators of G are of form u
1
(au(.) + b).

Since inverses and products (i.e., composites) of functions of this

form are also of this form every g in G is of the form

-1g(.) u (au() + b) for some positive a and real b.

12



Conversely, let u be a homeomorphism such that any g in G

is of form g() = u
1
(au(..) + b). For any F

0
in F put v

0
= F

0
u
-1

.

Then v
0

is a real homeomorphism and F
-1
F is in G. Consequently,

F() = vo(au() + b) where F01F() = u
-1

(au() + b). Thus, (u,v0)

satisfies the conditions of Problem One. This completes the proof.

Proposition 1 characterizes the first components of the pairs (u,v).

Most of the remainder of the paper deals with the problem of finding the

functions u. Proposition 2 below trivializes the problem of finding

v after a suitable u has been discovered.

Proposition 2: If F is a set of real homeomorphisms and u is

such that for some v,(u,v) satisfies the conditions of Problem One then

i. for any Fo in F (u,Fou1) satisfies Problem One.

ii. if (u,v) satisfies One, then (u,w) also satisfies Problem

One if and only if for some positive a and real b, w(x) = v(ax + b)

for all real x.

Proof: The proof of i is contained in the proof of Proposition 1. The

"if" half of ii is proven by deriving v(x) = w(x/a b/a) from

w(x) = v(ax + b) and substituting in F() = v(alu() + b1). The re-

mainder of ii is obtained by manipulating the equations

F() = v[a u() + ; F(-) = w[au.() + b]

to conclude w(x) = vE x - (obi/al) + b].
al

In view of Proposition 1 and 2, Problem One can be considered solved

when Problem Two below is solved.

13
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Problem Two: Given a group of real homeomorphisms G find all the

real homeomorphisms u such that for each g in G there is positive

a and real b such that g() = ul[an(.) + b].

Actually, Two is no more general than One because every group G

of real homeomorphisms can be regarded as the associated group of a

set of real homeomorphism F. This is so because the associated group

of a group of homeomorphisms is the group itself.

Problem One can be further simplified (again, without loss of

generality) by considering only the strictly increasing real homeomorphisms

rather than the increasing and decreasing homeomorphisms. First let m

rdenote the homeomorphism x----> -x. Since u
-1

Lau(-) + b] equals

(mu)
-1

(amu() - b), u satisfies Problem One if and only if mu does.

Consequently we can seek only the increasing u; the remaining functions

can be obtained by multiplication by minus one.

In the final simplification (Proposition 3) the groups with de-

creasing homeomorphisms are eliminated. It means that either there are

no u or all functions used to define the associated group are decreasing

'or all increasing.

Proposition 3: If a group. G contains a homeomorphism which fa:;ls

to be strictly increasing then there are no functions u satisfying

Problem One..

Proof: Every real.homeomorphism is either strictly increasing.or strictly.

If u is-strictly deCreasing then
1

so is u . For eachdecreasing.

positive and real x --> ax +,b is strictly increasing.. The

composition of an even number of decreasing functions is increasing.
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r
Consequently each function u

l
Lau(.) b] is strictly increasing

whenever u is a homeomorphism and a is positive. Thus if there

is any u satisfying Two for G, then each g in G is strictly in-

creasing. This proves the contrapositive.

For brevity, a strictly increasing homeomorphism of the reals onto

the reals will be called a scale. Thus Problem One when stripped to

essentials becomes

Problem Three: Given a group of scales, find all the scales u such

that for each g in the group there is some positive a and real b

such that g(.) = ul[au(-) b].

II. GLOSSARY

This section contains a list of definitions, notations and results

from the earlier paper and from elementary group theory. With few ex-

ceptions most introductory general algebra texts contain more group

theory than is needed here.

A scale is defined to be a strictly increasing homeomorphism of the

reals onto the reals. It is easy to verify that the set of all scales

is a group when the product fg of f and g is defined by fg(x) =

in this group is the identity on the reals and

The, relation 5, defined by f s,g jiff f (x) 6 g(x) for all real

is a partial order relation in the set of all scales because the

usual order relation is a partial relation in the set of all numbers.
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Furthermore, since scales are one-to-one and onto functions, f s g

implies hf gihg and fh s gh.

By direct calculation the set of all scales of form f(x) = ax + b

is easily shown to be a subgroup of the group of all scales and will

henceforth be called the affine group. Note that the affine group as

used here has only increasing functions in it. Two subgroups of the

affine group which are referred to frequently enough to require names

are the group of translations (x--) x + b: b is real} and the linear

group (x----> ax: a is positive}. A scale or group of scales will be

called affine if it is an element or subgroup of the affine group.

Two subgroups G and H of the group of all scales are said to

be conjugate if there is a scale u such that uGu
1
= H. In other

words, G and H are conjugate if for some scale u, the isomorphism

q---4 ugu
-1

maps G onto H . Thus there are scales u satisfying

Problem Three for a group G if and only if 2 is conjugate to a sub-

group of the affine group.

An affine system is a group of scales conjugate to a subgroup of

the affine group. A uniform system is an affine system conjugate to a

subgroup of the group of translations. From the preceeding section

can be seen that a theory of affine (uniform) systems can be regarded

as a theory about triples it, A, B where A and B are topological

spaces and F is a set of homeomorphisms of A onto B such that

there exist homeomorphisms u: Reals---> A and v: B---, Reals such that

for each in F, vFu, is in the affine group (respectively group

of translations).

16
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A detailed theory of uniform systems is available (Levine, 1970).

It contains necessary and sufficient conditions for a group of scales

to be a uniform system and a discussion of the set of all scales u

such that VII
1

is a group of translations. In this. paper, Problem

Three is solved by reducing it to answered questions about uniform

systems.

If G is a group of scales and uGu
1

is a subgroup of the

translations then any two scales F, G of G are rendered parallel

by u in the sense used in the introduction: the transformation of

the plane <:x,y >---4 <:11(X),y > carries the graphs of F and G

into parallel curves. Consequently we will say u renders G parallel.

Analogously, if uGu
-1

is a subgroup of the affine group u will be

said to render G similar. Since in both cases u can be thought of

as a solution to a large number of simultaneous functional equations,

u will be called a solution or a solution for G.

A group is abelian if xy equals yx for any two' elements in the

group. Equivalently, a group is abelian if each product xyx
-1
y
-1

is

equal to the identity in the group.

In any group G a commutator is.simply any element which can be

written in the form xyx
1
y-1 for some group elements x and y.

Henceforth the commutator xyx
-1
y
-1

will be abbreviated as [x,y].

Since [x,x] is the identity and [y,x] is the inverse of [x,y], the

set of products y
1 2
][x ,y

2
] [x

n
,y
n
] is a subgroup. It is denoted

G' and called the derived .group G. An informal discussion of
r4

some useful aspects of derived groups is in section III.

There are only two facts about derived groups which will be used

in the mathematical sections belCW. TheYare

17
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1. G' is invariant, i.e., if f is in G and g is in G', then

if
-1
gf is in X.

2. If G is a subgroup of the affine group, G' is a subgroup of

the group translations.

Fact 1 follows from the equations

lghf lgf)(f - lhf)

-lr r 1 -1 i
f Lg/hjf = Lf gf/f hfj .

To verify fact 2 one notes that if f(x) = ax + b and g(x) = cx + d then

for suitable k, fg(x) = acx + k. From this it follows that each commutator

is a translation.

A set of elements (gi3 in a group are called generators if every

element in the group can be written as a product of the gi and their

inverses. A group is finitely generated if it has a finite set of

generators. For example the associated group of a finite set of scales

is finitely generated. A group is cyclic or monogenic if it is generated

by one of its elements; i.e., if there is some g in G such that

G = (gn: n is an integer). For examples there are the group of real

integers and its subgroups.

A nonmonogenic group is a group which is not monogenic. For example,

Consider the additiVe:reals. If this group G were monogenic there would

be some real x such that G = (nx: n is an integer) and G would
rs.4

have a smallest positive element, (xi . This line of reasoning leads

to the following assertion which is needed in the sequel: A subgroup of

the additive reals which has a sequence of non-zero elements converging

to zero is nonmonogenic.
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This distinction between monogenir and nonmonogenic groups is

important because the following very strong uniqueness theorem for

nonmonogenic groups has been proven (Levine, 1970, section V.4).

Uniqueness Theorem: If G is a nonmonogenic group of scales and uGu-1

-1
is a subgroup of the translations, then vpy is a subgroup of the

translations if and only if for some positive a and real b, v() =

au(.) + b.

Finally a well known result attributed to Hion will also be needed

in the sequel.

Hion's Theorem (Fuchs, 1963, page 46): If x' is a strictly in--
creasing isomorphism of two subgroups of the additive group of reals,

then for some positive a and each x, x' equals ax.

III. SOLUTION FOR NONABELIAN GROUPS

The abelian and nonabelian groups are treated separately. Curiously,

the theory for nonabelian groups is much simpler than the theory for

abelian groups. An informal discussion of the significance of these

results is in the next section.

Theorem 1: A nonabelian group of scales is an affine system if

and only if its derived group is a nonmonogenic uniform system.

Proof: Let G be a nonabelian group of scales. To prove the condition

is necessary suppose for some scale u, uGu
-1

is a subgroup of the

1
(uGu )' is a subgrOup of the group of translations.affine group. Then

Since (uGu
=1 _

equals uG'u , G' is a uniform system. Since G is

nonabelian, we may choose and g in G such that fg gf. Without

19
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loss of generality, we may take f(.) = u
-1

(au() + b) for some a V 1,

for otherwise G would be a uniform system and isomorphic to some sub-

group of the additive reals. Since fgf
-1
g
-1

is in G' and fg gf,

fgf g
-1 -1

(

1
-) = u Lu() + c] for some c other than zero. Since G'

-r

is invariant, for each integer n, hn = fn (fgf
-1

g
-1

)f
-n

is in G'. But

since h
n
() equals u

-1
(u() + a

n
c) and a is neither zero nor one,

the isomorphism u
1
(u(-) + of G' into the additive reals

places G' in correspondence with a subgroup of the additive reals which

cannot be monogenic. Thus G' is a nonmonogenic uniform system.

Conversely, suppose G' is a nonmonogenic uniform system. Let u

be a scale such that 11,9:
1

u is a subgroup of the group of translations.

-1
Then for any g in G', g() equals u (u(') + k) for some k. Let

f be an arbitrary element of G. Since G' is normal, for each g in

G', fgf-1 is also in G'. Thus for some d, fgf1(-) = ulCu(-) +

i.e., g(-) = (uf)-11pf(s) + d]. Consequently, of is also a solution

for G'. By the uniqueness theorem, uf() = au() + b for some positive a;

i.e., f() = u1(au(.) + b). Thus uGu-1 is contained in the affine

group. This completes the proof.

As a corollary, we obtain a complete solution for. Problem Three

when G is nonabelian. Its proof is contained in the proof on Theorem

One.

Corollary; If G is a nonabelian affine system, then u satisfies

the conditions of Problem Three if and only if u renders parallel.
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In fact a somewhat sharper result has been proven. It is Theorem

One without the word "monogenic". The only proof now available is

long and technical. It will be presented elsewhere. The idea of the

proof is to show that if G' is a uniform system, then the subset F

of scales with fixed points is an invariant subgroup of G and pg

is abelian. From this it follows that G' F
.0

and G is abelian.rs

IV. DISCUSSION OF RESULTS

This section contains some informal comments on the results of

the previous section. No proofs will be given. No assertions made

here will be used in the sequel. A knowledge of some results in the

earlier paper and the definitions of rings and polynomials is assumed.

Some readers will find the results of the last section pleasing and

other readers disappointing. The problem of finding solutions for the

nonabelian affine systems has been reduced to finding solutions for a

particular abelian system. By using the rez;ults in the earlier paper

one can calculate solutions, specify necessary geometric properties on

empirical curves and design experiments to test hypotheses which imply

that a set of curves is an affine system.

However the reader concerned with numerical computations and gaining

insight by manipulating symbols may be disappointed by the reduction to

the derived The introduction of groups in the study of uniform

systems was justified by two, considerations Which'nO longer eeem.valid.

Firstly, the.numher of ecales that needed to beconsidered to obtain

solutions was drasticly reduced. A procedure was specified fol finding
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a subgroup with two generators within the associated group of a finite

set of scales such that the subgroup had exactly the same solutions as

the original set of scales. Consequently each finite set of curves

could be reduced to an equivalent set of no more than three curves to

be rendered parallel. Secondly, with associated groups our intuitions

about a highly familiar object could be used to understand uniform

systems. The associated group of a uniform system is isomorphic to a

subgroup of the additive reals. Thus, the scales in a uniform system

can be thought of as numbers and the composition of scales as addition.

The reader may now be disappointed since the derived group of an

affine system may be infinitely generated even when the associated

group is finitely generated. Furthermore, all of the derived group's

finitely generated subgroups may be monogenic. Consequently, it will

often be impossible to find a small subgroup of the derived group

equival'int (in the sense of having the same solutions) to the larger

group. Furthermore, derived groups can be very complicated objects with

a complicated, unfamiliar calculus.

These objections are answered in the remainder of this section

by showing that thereba ring structure inherent in affine systems.

Using the derived group and the results of the last section we may apply

our intuitions concerning a very simple and familiar object, namely the

polynomials in one variable with integer coefficients. Furthermore, as

rings, affine systems will always have equivalent finitely generated sub-

systems. A simple algorithm can be given for locating a pair of scales
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such that each of the scales needed to compute a solution can be

defined by finitely many operations (of a simple, familiar nature)

applied to these two scales.

Consider for a. moment Z[t] , the polynomials in t with integer

coefficients; i.e., the set expressions of form

2 r
p(t) = aren0

integers, with the usual laws of multiplication and addition. One way

to think about Z[t] is as an abelian group with an additive operation

cp mapping Z[t] into itself such that cpp(t) is simply the polynomial

p(t) times the polynomial t. Then each polynomial can be written

in the form n0 + nly(1) + n2y(y(1)) + + nry(...y(1)) and the

definition of multiplication can be reduced to statements about the

iterates of the operation cp.

If ti ring structure is ignored and gt] is regarded as an

additive group then Z[t] is not finitely generated. For any finite

subset Z[t] there will always be a polynomial (namely, t
r

for some

large r) which cannot be obtained by finitely many of the operations of

addition and subtraction applied to the generators. On the other hand as

a ring it is generated by 1 and t. And as a group with one operatr

cp, it is generated by the element 1.

To see the relevance of rings to affine systems consider an affine

system with associated group G generated by a pair of scales, say g(x)

1r 1
u
-

Ltu(x) + b] for (t 1) and f(x) u 1(u (x) + 1). For simplicity

suppose f is in the derived group G'. The general element of G

can be written in the form



(1)

-22-

n
1 1

n
2

n m
rh=g f g g f

where n
1

or m
r

may be zero. Recall that h is in the derived group

-1 -1
iff it can be written as a product of commutators [x,y] = xyx y

where x and y are each products of powers of f and g. If we

add the exponents of g in a commutator clearly we must get zero. Con-

sequently, each element in the derived group of G is of the form (1)

with n
1

+ n
2
+ n

r
= 0. Consequently we can write an element in

h e G' asti

h= (g
n
lf
m
lg-n 1)(g

n
1
+n

2f
m
2g

-(n
1
+n

2
)

) (gOf

m
rg -0)

= (g
n
lfg

-n
1)
m
1(g

n
1
+n

2
fg ...

-(n
1
+n

2
)fli m

2
(f)

By direct calculation

-1 -lr
gfg = u Lu(..) + t]

gnfg-n g(gn-lfg-(n-1)
4
-1 u-151(.) tn]

(gnfg-n)m u-1[11(.) mtn]

- 1rand consequently h equals u Lu() + p(.0] where p(t) is
n
1

n
rm

1
t + m

2
t

2
+ m t

The analogy with polynomials is almost perfect. When G is an

affine system, then G' is a (generally not finitely generated) abelian

group. However if we may also regard G' as a ring by thinking of it

as an additive group (the, group operation is composition of functions)

24
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with a multiplication defined by a pair of operations cp(h) = ghg
-a

and its inverse y
-1

(h) = g
-1

hg. (The inverse operation must be in-

cluded because some of the n. may be negative).

Now we return to the general situation and show that affine

systems are even "more finite" than uniform systems. Let G be a non-

abelian affine system. By selecting a pair of elements which don't

commute, say f1 and f2, we obtain an element in the derived group

- - - lr
f = flf2f1

1
f2

1
= u uu(.) + k] for some solution u and some k 0.

Since G cannot be an (abelian) uniform system there must be some g

-1r -1 1r I
say g = u Ltu(-) + b] not in G'. Since g = u Lt u() - b/t]

is also not in G' we may choose g such that t is between one and

zero.

Such a g can always be selected prior to finding a solution u.

It is easy to show by using the fact that u is a scale that these

functions have the following characteristic property: For very large

x, x exceeds g(x) and for very small x, g(x) exceeds x.

We consider the associated group H of the subset of
r n n

fg : n 0

H will be closed under the operation cp(h) = ghg
-1

. As a group H

will have generators (e (f)). Since H is an abelian group (in fact a

uniform system), we may indicate the composition of functions in H by

addition so that the typical element of IA will be

h = n
0
f + nl y(f) + n

r
y (f) where nh denotes. h + h + h

n times and cpr (f) denotes y(... cp(f)) r times. As with polynomials,

the operation y can be used to define a ring structure on H. Since

cp(hi + h2) = cp(hi) + cp(h2) and since

25
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-1r lr
h
1
= u Lu() + k

1
] and h

2
= u 02() + k

2
]

- 1r - 1r
imply h

1
+ h

2
= u Lu(..) + k

1
+ k

2
] and cp(h

1
) = u Lu() + tk

1
]

there will be a ring homomorphism from Z[t] onto H. Consequently H

can be regarded as a monogenic ring. Every element in H can be ex-

pressed as a finite combination of a fairly simple kind of the two scales

f and g. Furthermore, since the sequence
cip(f) u1(u(.) tnk)

converges to the identity scale, the scales rendering H parallel are

exactly the scales rendering G similar.

Notice that such an f and g can be found in nonabelian G whether

G is finitely generated or not. Thus there is a sense in which (non -

abelian) affine systems are simpler objects than uniform systems. They

can always be regarded as having finitely generated equivalent subsystems.

V. SOLUTION FOR ABELIAN GROUPS

Here we consider the affine systems which are abelian but not

uniform. A simple necessary condition will be given which will make

their presence obvious in even rough data. Then necessary and sufficient

conditions will be given. Finally the problem of finding the trans-

formations which render them similar will be solved by dissecting them

into two uniform systems. All the solutions and only solutions are

obtained by "pasting together" solutions to the uniform systems.

Necessary. condition: If G is an abelian affine system but not

a uniform system, then there is exactly one number x
0

such that if f
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and g are two different scales of G then f(x) equals g(x) if

and only if x equal x0. This point x0 is a fixed point (i.e.,

satisfies the equation f(x) = x) of all the functions f of G.

In other words, there is exactly one point common to all graphs

of the functions of G.

Proof: First let 2, be a subgroup of the affine group of scales

ax bl. Then by a direct calculation it is seen that two

functions of G
;

commute iff they have the same fixed points. Since
tr..

the graphs of affine functions are straight lines, for any two different

affine functions f and g the equation f(x) = g(x) has at most one

solution. Note that G is a uniform system iff it is a subgroup of

the translations, i.e., e and the affine functions without fixed points.

Consequently, if the subgroup of the affine group G is an abelian affine

system but not a uniform system, then the condition is valid. Since for

any scale u, f, and g we have

f(x) = g(x) iff uifu[u1(x)] = u
-1 1
gu u (x)j

the condition is generally valid.

Only those groups satisfying the necessary condition are considel

in the sequel. Some additional notation is needed to express the remaining

results clearly.

Let G be any group satisfying the necessary condition with fixed

point x0. For any scale g of G let (x0,00) (x0,00) and

(-co,x ) be the homeomorphisms obtained by restricting g
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to the indicated intervals. Let 2 and m denote the real-valued

homeomorphisms of (x0,03) and (- o,x0), respectively, given by

1(:

A(x) = natural logarithm of

m(x) = 2(2x0 - x) .

- x
0

)

Two homomorphisms are now defined which make two groups of scales

of the group G.

For each g in G let g and g be defined by

g
+

= A
-1

; g
-
= mg m

-1

Since (gh).1. = g+114. and (gh).. = gh_ we have (gh)+ = g+h+ and

(gh) = g h . Since g
+

is the composition of increasing homeomorphisms
- - _

mapping the reals eventually onto the reals, it is a scale. Since g

is the composition of an even number of decreasing homeomorphisms and

an increasing homeomorphism, it too is a scale. Consequently and

are homomorphisms into the group of all scales.

Recall that G+ G as sets of scales are partially ordered by

f s g iff f (x) gi g(x) for all real x. When the mappings and

are isomorphisms, G
+

and G are obviously isomorphic groups. Still

-
and. G need not be isomorphic as ordered groups. It is easy to

show that they are isomorphic as ordered groups whenever condition 3

of the next theorem is satisfied.

The main result of this section can now be formulated. It contains

a complete characterization of the abelian affine systems.
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Theorem 2: Let G be a group of scales satisfying the necessary con-

dition. Then G is an abelian affine system but not a uniform system

if and only if

+
1. G is a uniform system

2. G is a uniform system

3. for all f, g in G, f
+

g
+

iff f s g .

Proof of Necessity: When G is conjugate to a subgroup of the linear

r
group each g in G

1
is of the form g(-) = u Lau()] for some fixed

scale u. With these equations, verification of the three conditions is

a simple calculatiol. To show each abelian affine system which is not

a u.s. is conjugate to a subgroup of the linear group, let u be a

solution. Since the mapping x---4 u(x) - u(x0) is also a solution

we may choose u such that u(x0) is zero. Then the equation ugu
1
(x)=

ax + b implies b is zero and G is conjugate to a subgroup of the

linear group.

Proof of Sufficiency: Let e and G have solutions v and w

r r
respectively. Then the equations g

+ 1
= v Lv(-) + c] and g = w-1 uw(-) +

define homeomorphisms of G+ and G into the ordered additive reals

given by g c and g ---4 k. By condition 3, the mappings g+ c

and g g+ must be 1-1. Consequently, c g+ g g -"-"4 k

defines a strictly monotonic homomorphism of two subgroups of the reals.

By Hion's-theorem the ratio of c to k remains constant as g e

ranges over G. Since for any positive a, av is a solution and since
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r r
g = v

l
Lv(.) c] implies g+ = (av)-1 Lay(.) ap], the ratio can be

considered to be plus or minus one. But condition 3 implies that c

and k have the same sign. Consequently, without loss of generality

we assume c equals k.

To obtain a solution we define a function u by

f'i 1v2 (x) x > x0

u(x) = x
0

, x = x0

-
k m

1
wm x < x0

This function is obviously a scale. Using the functional equation for

the logarithm it is routine to verify that u is a solution and to

complete the proof.

The three conditions can be shown to be independent. However, if

it is known that e and G are uniform systems, then the third con-

dition can be simplified by choosing any xl smaller then x0 and x2

larger than x0. Then condition 3 can be replaced by 3':

3'. f(x ) g g(xl) iff g(x2) gi f(x2).

The final result reduces uniqueness and computation questions to

questions about uniform systems. We use the notation already introduced.

Since the proof employs no new arguments, it is omitted.

Corollary: (Uniqueness and Computation for Abelian Groups) Let G be

an abelian affine system but not a uniform system. Let g e be one

fixed element G. Then a scale u is a solution for G if and only if1
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1. v = Au
4.
A

1
is a solution for G.4"

2. w = mu m
-1

is a solution for G

- -
3. vg v

- w
11

(0) equals wg (0) .

Thus to find a solution for 2 as an affine system, one chooses g e

in G and solves uniform systems G
+

and G for and w. To satisfy
-

condition 3, w is multiplied by the positive constant vg
+
v

1
(0)/wg w

1
(0).

- -

A solution is given then by the formula in the preceeding proof.

31
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